If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+8q+7=0
a = 1; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·1·7
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6}{2*1}=\frac{-14}{2} =-7 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6}{2*1}=\frac{-2}{2} =-1 $
| x-7/2+2=-9 | | 33=8a+9 | | -7x/5+3=-18 | | 8x/7-4=52 | | 29(c-970)=522 | | -32=-7u+5(u-6) | | 3√x/2+4=7 | | 80v+0.50=1350 | | 6x+10=7x+5 | | 5x^2+100=30x | | f+(6/10)=8.8 | | √x/4=6 | | 6x+8x-6=0 | | 1/2n=58 | | 3x/3=-126/3 | | 5g+3+25=2g+9+30 | | 26=z-450/20 | | 13w=7w+36 | | -27-4x=-7(2x+9) | | 828=9(v-839) | | 7(w+3)=-3(4w-5)+4w | | 14+5=-5x-6(-3x+15)+15 | | 5+b÷7=-2 | | 0.25m-1=7 | | 1*7/8w=-11*1/4 | | 3(x-6)+2=-10 | | 7x-6+3x=3(4x+2)-4x-2 | | (19-y)+5y=55 | | h+295/22=20 | | (8x/7)=56 | | 5v^2=-8-3 | | 10²+(x-7)²=x |